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How high can I0 be? Consider concentric layouts for M1 and M2

Individual segments can be a little bigger than minimum sized w/o major change 

in performance

May select K1=K2=1

 11
M

 12
M

 1K1
M

 21
M

 22
M  2K2

M

Review from last lecture



How high can I0 be?
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Other layouts for enhancing speed of operation

Goal:  reduce area and perimeter on drain

Shared-drain structure
Circular-concentric structure

Though the reduced size drain structures work very well, CAD support may be 

limited for layout, simulation, and extraction

(but would not be applicable if one 
device in well and one outside of well)

Review from last lecture



Noise is a random time-domain signal that 
characterizes movement of electrons in devices 

Example: Noise in Resistors

Vn(t)

R

R

Ideal Resistor Model of noise in a  

Resistor



Typical noise waveform for a resistor  

Noise sources in electronic devices are time-domain sources and can be modeled 
with independent voltage and current sources

Noise sources have a polarity though the statistical characteristics are independent of 
how the polarity is assigned

Noise is often quantified by the corresponding RMS value of the noise voltage or  
current at a node or branch in a circuit



Noise in a System  
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VOUT=VOSIG+VNOUT
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VOUT

• Often many noises sources present
• One can be corrupting the input and others are internal to the system
• Noises sources often  sufficiently small that superposition can be applied to 

determine  the combined effects of all noise sources on VNOUT



Characterization of a Noise Signal 

Noise naturally characterized by its RMS value
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Noise sources in electronic circuits  

Resistors, Transistors, and Diodes all have one or more 
internal noise sources

Capacitors and Inductors are noiseless

The presence of noise sources in devices is the only reason that input signals in 
filters are not made arbitrarily small to reduce effects of nonlinearity to 
arbitrarily small levels

The concept of “Dynamic Range” is used to characterize how small of input signals can 
be practically used in filters

To achieve acceptable linearity in a filter, the designer should provide just enough 
“dynamic range” to satisfy the requirements of an application.  Any extra dynamic 
range will invariably come at the expense of increased design efforts, cost, 
complexity, and power dissipation



Dynamic Range  

“Dynamic range is the ratio of a specified maximum level of a parameter (e.g. quantity), 
such as power, current, voltage, or frequency, to the minimum detectable value of that 
parameter “

From Wikipedia:   

• The maximum level of such a quantity is strongly dependent upon the distortion 
acceptable in a particular application

• This value may be dependent upon frequency

• The minimum detectable value of a quantity may be dependent upon application
Some authors interpret the minimum detectable value to be the RMS value

of  the quantity when the input signal is zero

• The use of a single value for the DR for a filter without knowing the specific 
applications is of questionable use 



“whereas noise imposes a lower limit on the range of signal amplitudes that can be 
meaningfully processed by a circuit, linearity often imposes the upper limit.  The 
difference between them is the dynamic range”

From Allen and Holberg:   

From Gregorian and Temes: (in the context of op amp circuits)

“Due to the limited linear range of the op-amp, there is a maximum input signal 
amplitude, Vin,max which the device can handle without generating an excessive amount of 
nonlinear distortion.  ……  Due to spurious signals (noise, clock feedthrough, low-level 
distortion such as crossover distortion, etc.) there is also a minimum input signal Vin,min

which still does now drown in noise and distortion.  The dynamic range of the op amp is 
then defined as                                        measured in decibels.”  ,max
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Numerous definitions for DR include some “qualitative” terms in the definition making it 
difficult to identify a universally accepted definition of the DR though the concept is useful 

Dynamic Range  



Numerous definitions for DR include some “qualitative” terms in the definition making it 
difficult to identify a universally accepted definition of the DR though the concept is useful 

Dynamic Range  

Though the concept of DR is often not discussed rigorously and 
though there are various definitions of DR,  Dynamic Range 
should be the primary driver of signal swing, power dissipation, 
and architecture selection not only in filter circuits but in analog 
circuit design in general

SNDR is a metric that is rigorously defined that captures some 
of the DR properties   



Statistical Characterization of Noise  

Vn(t)

If Vn(t1) is a sample of Vn(t), then Vn(t1) is a random variable 

For almost all noise sources, the distribution of Vn(t1) is zero mean and often Gaussian

For many noise sources, if Vn(t1) and Vn(t2) are two distinct samples with t1≠t2, these 
random variables are identically distributed and uncorrelated (iid)   

Noise (voltage)  is also characterized by how it is distributed throughout the frequency 
spectrum by its power spectral density, S, or voltage spectral density SV

Thus noise is characterized by both S and the amplitude distribution function 



Statistical Characterization of Noise  

Vn(t)

The RMS noise voltage in the frequency band [f1,f2] is given by the expression 
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And the total RMS noise voltage is given by the expression
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Statistical Characterization of Noise  

Vn(t)
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Parseval’s Theorem
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Statistical Characterization of Noise  

Vn(t)

If the spectrum is flat, then the noise is termed “white” noise

White noise can have an amplitude distribution that is Gaussian or non-Gaussian

For a resistor, the noise spectrum is white (over a very wide frequency range), 
the amplitude distribution is Gaussian, and any two distinct samples are iid. 

Vn(t)

R 2 2

( / sec)4 V Hz or VS kTR



Dynamic Range  

Often for audio filters, the DR is defined to be the ratio at the output between 
that due to a signal at 1% THD to  the RMS noise voltage with the actual 
output spectrum multiplied by that of a C-Message bandpass filter     

From “Audio Measurement Handbook” by Bob Metzlar



Analysis of Noise in Filter Circuits
Consider a filter circuit with N noise voltage sources (can be easily modified to 
include both noise voltage and current sources)

The noise sources can be represented by the block diagram shown below

Assume Tk(s) is the transfer function from the kth source to the output
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By superposition

T(s)
VN0

VOUT=VOSIG+VNOUT

VINSIG

VN1 VN2 VNn

VOUT
N=n+1



Analysis of Noise in Filter Circuits
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If the noise sources are uncorrelated with spectral density S1, … SN, the spectral 
density and the RMS noise voltage at the output are given by the equations:
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Analysis of Noise in Filter Circuits
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A noise analysis in the frequency domain can be easily run in Spectre to obtain the 
RMS noise voltage at the output

This can be referred back to the input by dividing by the gain from the input to the 
output to determine the input-referred SNR (see next page)

There is now a time-domain noise analysis capability in Cadence so actual time-domain 
noise analysis is possible
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Continuous-Time 

System

Vn1

Vn2

VnN

VOUT

VN0 usually not part of the filter so affects system but not filter



Input-Referred Noise in Filter Circuits
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Let T(s) be the transfer function from the input to the output.  (usually T(s) will be 
distinct from each of the noise transfer functions).

The input-referred noise spectral density is given by the expression
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The input-referred RMS voltage is thus given by
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Relationship between frequency domain and 
time domain noise analysis

Linear 

Continuous-Time 

System

V1

V2

VN

VOUT

 
2

_

10 0

N

OUT RMS OUT i i

if f

S df S T j df
 

 

   V

2 2

T T

RMS_OUT
0 0

T T

1 1

T T
V lim V (t)dt lim V (t)dt

 

  
 

    
     

    
OUT OUT

E

RMS_OUT _
V 

OUT RMS
V

Parseval’s Theorem



VIN C

R VOUT

Example:  First-Order RC Network
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Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• Note the continuous-time noise voltage has an RMS value that is independent of R
• The noise contributed by the resistor is dependent only upon the capacitor value C
• This is often referred to at kT/C noise and it can be decreased at a given T  only by 

increasing C



Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• Note the continuous-time noise voltage has an RMS value that is independent of R
• The noise contributed by the resistor is dependent only upon the capacitor value C
• This is often referred to at kT/C noise and it can be decreased at a given T  only by 

increasing C
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Noise Associated with Capacitors
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Example:  Switched Capacitor Sampler 
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Example:  Switched Capacitor Sampler 
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Vn(t)
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Example:  Switched Capacitor Sampler 

Vn(kT) is a discrete-time sequence obtained by sampling a continuous-time noise waveform
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Characterization of a noise sequence 
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Theorem If V(t) is a continuous-time zero-mean noise source 

and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ….   

then the RMS value of the continuous-time waveform is the same as 

that of the sampled version of the waveform.  This can be expressed 

as
RMS RMS

ˆV V

Theorem If V(t) is a continuous-time zero-mean noise signal and 

<V(kT)> is a sampled version  of V(t) sampled at times T, 2T, ….   then the 

standard deviation  of the random variable  V(kT), denoted as  

satisfies the expression
V̂



ˆ RMS RMSV
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Example:  Switched Capacitor Sampler 
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Vn(t)

RS

VLOAD(t)

RL

What is the RMS value of the output noise voltage due to the noise on RS? 

 

Vn(t)

RS
RL

VnL(t)

VLOAD(t)

What is the RMS value of the output noise voltage due to the noise on RL and RS? 



Stay Safe and Stay Healthy !



End of Lecture 36


